52 research outputs found

    Comparison of aircraft-derived observations with in situ research aircraft measurements

    Get PDF
    Mode Selective Enhanced Surveillance (Mode-S EHS) reports are aircraft-based observations that have value in numerical weather prediction (NWP). These reports contain the aircraft's state vector in terms of its speed, direction, altitude and Mach number. Using the state vector, meteorological observations of temperature and horizontal wind can be derived. However, Mode-S EHS processing reduces the precision of the state vector from 16-bit to 10-bit binary representation. We use full precision data from research grade instruments, on-board the United Kingdom's Facility for Atmospheric Airborne Measurements, to emulate Mode-S EHS reports and to compare with derived observations. We aim to understand the observation errors due to the reduced precision of Mode-S EHS reports. We derive error models to estimate these observation errors. The temperature error increases from 1.25 K to 2.5 K between an altitude of 10 km and the surface due to its dependency on Mach number and also Mode-S EHS precision. For the cases studied, the zonal wind error is around 0.50 ms− 1 and the meridional wind error is 0.25 ms− 1. The wind is also subject to systematic errors that are directionally dependent. We conclude that Mode-S EHS derived horizontal winds are suitable for data assimilation in high-resolution NWP. Temperature reports may be usable when aggregated from multiple aircraft. While these reduced precision, high frequency data provide useful, albeit noisy, observations; direct reports of the higher precision data would be preferable

    HVint: a strategy for identifying novel protein-protein interactions in Herpes Simplex Virus Type 1

    Get PDF
    Human herpesviruses are widespread human pathogens with a remarkable impact on worldwide public health. Despite intense decades of research, the molecular details in many aspects of their function remain to be fully characterized. To unravel the details of how these viruses operate, a thorough understanding of the relationships between the involved components is key. Here, we present HVint, a novel protein-protein intra-viral interaction resource for herpes simplex virus type 1 (HSV-1) integrating data from five external sources. To assess each interaction, we used a scoring scheme that takes into consideration aspects such as the type of detection method and the number of lines of evidence. The coverage of the initial interactome was further increased using evolutionary information, by importing interactions reported for other human herpesviruses. These latter interactions constitute, therefore, computational predictions for potential novel interactions in HSV-1. An independent experimental analysis was performed to confirm a subset of our predicted interactions. This subset covers proteins that contribute to nuclear egress and primary envelopment events, including VP26, pUL31, pUL40 and the recently characterized pUL32 and pUL21. Our findings support a coordinated crosstalk between VP26 and proteins such as pUL31, pUS9 and the CSVC complex, contributing to the development of a model describing the nuclear egress and primary envelopment pathways of newly synthesized HSV-1 capsids. The results are also consistent with recent findings on the involvement of pUL32 in capsid maturation and early tegumentation events. Further, they open the door to new hypotheses on virus-specific regulators of pUS9-dependent transport. To make this repository of interactions readily accessible for the scientific community, we also developed a user-friendly and interactive web interface. Our approach demonstrates the power of computational predictions to assist in the design of targeted experiments for the discovery of novel protein-protein interactions

    Study protocol for the multicentre cohorts of Zika virus infection in pregnant women, infants, and acute clinical cases in Latin America and the Caribbean: The ZIKAlliance consortium

    Get PDF
    Background: The European Commission (EC) Horizon 2020 (H2020)-funded ZIKAlliance Consortium designed a multicentre study including pregnant women (PW), children (CH) and natural history (NH) cohorts. Clinical sites were selected over a wide geographic range within Latin America and the Caribbean, taking into account the dynamic course of the ZIKV epidemic. Methods: Recruitment to the PW cohort will take place in antenatal care clinics. PW will be enrolled regardless of symptoms and followed over the course of pregnancy, approximately every 4 weeks. PW will be revisited at delivery (or after miscarriage/abortion) to assess birth outcomes, including microcephaly and other congenital abnormalities according to the evolving definition of congenital Zika syndrome (CZS). After birth, children will be followed for 2 years in the CH cohort. Follow-up visits are scheduled at ages 1-3, 4-6, 12, and 24 months to assess neurocognitive and developmental milestones. In addition, a NH cohort for the characterization of symptomatic rash/fever illness was designed, including follow-up to capture persisting health problems. Blood, urine, and other biological materials will be collected, and tested for ZIKV and other relevant arboviral diseases (dengue, chikungunya, yellow fever) using RT-PCR or serological methods. A virtual, decentralized biobank will be created. Reciprocal clinical monitoring has been established between partner sites. Substudies of ZIKV seroprevalence, transmissio

    Plus- and Minus-End Directed Microtubule Motors Bind Simultaneously to Herpes Simplex Virus Capsids Using Different Inner Tegument Structures

    Get PDF
    Many viruses depend on host microtubule motors to reach their destined intracellular location. Viral particles of neurotropic alphaherpesviruses such as herpes simplex virus 1 (HSV1) show bidirectional transport towards the cell center as well as the periphery, indicating that they utilize microtubule motors of opposing directionality. To understand the mechanisms of specific motor recruitment, it is necessary to characterize the molecular composition of such motile viral structures. We have generated HSV1 capsids with different surface features without impairing their overall architecture, and show that in a mammalian cell-free system the microtubule motors dynein and kinesin-1 and the dynein cofactor dynactin could interact directly with capsids independent of other host factors. The capsid composition and surface was analyzed with respect to 23 structural proteins that are potentially exposed to the cytosol during virus assembly or cell entry. Many of these proteins belong to the tegument, the hallmark of all herpesviruses located between the capsid and the viral envelope. Using immunoblots, quantitative mass spectrometry and quantitative immunoelectron microscopy, we show that capsids exposing inner tegument proteins such as pUS3, pUL36, pUL37, ICP0, pUL14, pUL16, and pUL21 recruited dynein, dynactin, kinesin-1 and kinesin-2. In contrast, neither untegumented capsids exposing VP5, VP26, pUL17 and pUL25 nor capsids covered by outer tegument proteins such as vhs, pUL11, ICP4, ICP34.5, VP11/12, VP13/14, VP16, VP22 or pUS11 bound microtubule motors. Our data suggest that HSV1 uses different structural features of the inner tegument to recruit dynein or kinesin-1. Individual capsids simultaneously accommodated motors of opposing directionality as well as several copies of the same motor. Thus, these associated motors either engage in a tug-of-war or their activities are coordinately regulated to achieve net transport either to the nucleus during cell entry or to cytoplasmic membranes for envelopment during assembly

    Enabling Continuous Descent Operations in High-Density Traffic

    No full text
    The Air Traffic Management (ATM) community strives to reduce the environmental impact per flight. Continuous Descent Operation (CDO) has been identified by the ATM community as one of the operational improvements that could reduce aviation’s environmental impact, both in terms of aircraft noise and gaseous emissions. In the current ATM system, CDOs are only feasible in low-density traffic. The ultimate goal is an ATM system that facilitates CDOs in high-density traffic. This research described in this thesis focused on two features of such an ATM system: decision support that enables the air traffic controller to accurately set up traffic for CDO, and delegation of the spacing task to the flight crew during the CDO. Two enablers are real-time availability of meteorological data, and accurate trajectory prediction. In this thesis new methods were developed and validated to infer wind, air pressure, and air temperature profiles from aircraft surveillance data. Trajectory prediction was defined as a machine learning problem, enabling predictions based on historic aircraft trajectory and meteorological data without the need for explicit modeling of the aircraft performance and procedures. A decision support tool was developed further and tested using a human-in-the-loop experiment. The tool enabled the subjects to set up traffic for CDO in high-density traffic at an acceptable work load level and high level of situation awareness. Monte-Carlo simulations were carried out to assess the runway capacity that can be achieved when delegating the spacing task to the flight crew. These simulations showed the feasibility of CDOs in high-density traffic.Control and SimulationAerospace Engineerin

    Control Space Analysis of Three-Degree Decelerating Approaches at Amsterdam Airport Schiphol

    No full text
    Amsterdam Schiphol Airport currently uses a Continuous Descent Approach during night time operations only, due to reduced runway capacity caused by unpredictable individual aircraft behavior. The Three-Degree Decelerating Approach (TDDA) has been developed to increase predictability and runway capacity by switching the sepa- ration task from Air Traffic Control to the pilot on board the aircraft. The research described in this paper identifies the factors that influence the control space of aircraft performing a TDDA in a real-life setting. Control space is defined as the difference between the maximum and minimum duration to perform the TDDA. Using different control strategies, a fast approach or slow approach can be flown. A fast-time simulation tool was built to perform simulations with different aircraft types, initial weights, wind speeds and directions. Preliminary simulations indicate that a flap scheduler is needed to optimize control space, and the flap scheduling algorithm was enhanced to find optimal flap schedules for all wind conditions. The results of these simulations show that the influence of wind direction depends on aircraft aerodynamic characteristics, which mainly depend on the drag characteristics of the aircraft and aircraft weight. Furthermore, the results can be used to determine whether a TDDA can be executed using different aircraft and under different wind conditions.Control & OperationsAerospace Engineerin
    corecore